第五三四章 效率-《永不下车》


    第(1/3)页

    不论从哪一点出发,“强人工智能”,都必须尽早应用到实践中去。

    找到莱斯利*兰伯特,方然毫不掩饰的直接说出构想,对这一计划,兰伯特原则上认为“可以一试”,但并未给出任何确切的承诺。

    “是的,阿达民先生,用‘强人工智能’替代现有的ai,的确可以提升一些效率。

    这一点,不知您是否理解,即便通用型人工智能与强人工智能,都是基于现有信息技术水平的计算机加软件之体系,彼此之间,没有明显的技术差距,后者的处理效率也会大大优于前者,当然,能领先到什么程度,还说不准。”

    “是因为两者的软件架构,一个基于fscim,一个则基于‘自主思维’吗。”

    “正是如此,或者说,在算力消耗相同的情况下,‘强ai’比现有ai快得多,主要原因并不是前者的效率极高;

    而是基于fscim体系的传统人工智能,在解决实际问题时,效率太低。”

    莱斯利*兰伯特的说法,对熟悉fscim体系的方然而言,一听就懂,他早知道这体系的弊端。

    fscim,联邦标准信息测度码,诞生在旧时代的一套“计算机系统通用编码标准”,原则上是站在计算机、而非人类的立场上,描述客观世界,进而从这一体系出发,可以用传统ai的诸多算法,实现诸多功能。

    这一体系,早在诞生之初,就引起it业界的浓厚兴趣,但也有很多业内人士不以为然。

    反对者的一大武器,便是fscim体系的低效,这种低效,并不是体系架构本身多么拙劣,而是由于fscim的开发初衷:

    描绘计算机眼中的世界,进而,为计算机提供一种内禀的通用“语言”。

    这样的体系,显而易见,并无人类对客观世界的既有认识,以其为基础开发的程序,一般而言,也几乎无法借助人类已有的科学技术成果,去加快处理的速度。

    这是什么意思呢,譬如说,物流网络的运力规划问题,用ai解决的一般思路,是挂载深度学习网络,并根据问题的性质给定大量边界条件,ai上线运行后,很快就能根据初始条件与运行数据,逐步优化策略,给出较好的解决方案。
    第(1/3)页